Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Chinese Journal of Reparative and Reconstructive Surgery ; (12): 226-233, 2020.
Article in Chinese | WPRIM | ID: wpr-856391

ABSTRACT

Objective: To explore the possibility of constructing tissue engineered adipose by adipose tissue derived extracellular vesicles (hAT-EV) combined with decellularized adipose tissue (DAT) scaffolds, and to provide a new therapy for soft tissue defects. Methods: The adipose tissue voluntarily donated by the liposuction patient was divided into two parts, one of them was decellularized and observed by HE and Masson staining and scanning electron microscope (SEM). Immunohistochemical staining and Western blot detection for collagen type Ⅰ and Ⅳ and laminin were also employed. Another one was incubated with exosome-removed complete medium for 48 hours, then centrifuged to collect the medium and to obtain hAT-EV via ultracentrifugation. The morphology of hAT-EV was observed by transmission electron microscopy; the nanoparticle tracking analyzer (NanoSight) was used to analyze the size distribution; Western blot was used to analyse membrane surface protein of hAT-EV. Adipose derived stem cells (ADSCs) were co-cultured with PKH26 fluorescently labeled hAT-EV, confocal fluorescence microscopy was used to observe the uptake of hAT-EV by ADSCs. Oil red O staining was used to evaluate adipogenic differentiation after hAT-EV and ADSCs co-cultured for 15 days. The DAT was scissored and then injected into the bilateral backs of 8 C57 mice (6-week-old). In experimental group, 0.2 mL hAT-EV was injected weekly, and 0.2 mL PBS was injected weekly in control group. After 12 weeks, the mice were sacrificed, and the new fat organisms on both sides were weighed. The amount of new fat was evaluated by HE and peri-lipoprotein immunofluorescence staining to evaluate the ability of hAT-EV to induce adipogenesis in vivo. Results: After acellularization of adipose tissue, HE and Masson staining showed that DAT was mainly composed of loosely arranged collagen with no nucleus; SEM showed that no cells and cell fragments were found in DAT, and thick fibrous collagen bundles could be seen; immunohistochemical staining and Western blot detection showed that collagen type Ⅰ and Ⅳ and laminin were retained in DAT. It was found that hAT-EV exhibited a spherical shape of double-layer envelope, with high expressions of CD63, apoptosis-inducible factor 6 interacting protein antibody, tumor susceptibility gene 101, and the particle size of 97.9% hAT-EV ranged from 32.67 nmto 220.20 nm with a peak at 91.28 nm. Confocal fluorescence microscopy and oil red O staining showed that hAT-EV was absorbed by ADSCs and induced adipogenic differentiation. In vivo experiments showed that the wet weight of fat new organisms in the experimental group was significantly higher than that in the control group ( t=2.278, P=0.048). HE staining showed that the structure of lipid droplets in the experimental group was more than that in the control group, and the collagen content in the control group was higher than that in the experimental group. The proportion of new fat in the experimental group was significantly higher than that in the control group ( t=4.648, P=0.017). Conclusion: DAT carrying hAT-EV can be used as a new method to induce adipose tissue regeneration and has a potential application prospect in the repair of soft tissue defects.

2.
Chinese Journal of Tissue Engineering Research ; (53): 1762-1768, 2020.
Article in Chinese | WPRIM | ID: wpr-848001

ABSTRACT

BACKGROUND: Construction of seedless tissue-engineered adipose tissue from acellular adipose tissue is a hot research topic in soft tissue filling. OBJECTIVE: To investigate the effects of preparation methods of acellular adipose tissue on the induction of adipose regeneration after transplantation in recent years, and to look forward to its clinical application prospects. METHODS: A computer-based online search of PubMed and Elsevier databases was performed to retrieve papers regarding acellular adipose tissue preparation and transplantation published between January 1971 and December 2018 with the search terms “adipose tissue engineering; adipose tissue extracellular matrix; soft tissue repair; angiogenesis; adipogenic induction”. The retrieved papers were summarized from the perspectives of improvement in preparation methods of acellular adipose tissue, cross-linking cytokines and biomaterials. RESULTS AND CONCLUSION: Retrieved studies have shown that extracellular matrix of adipose tissue can act as an ideal scaffold material for soft tissue filling. Subcutaneous implantation of extracellular matrix of adipose tissue can recruit host stem cells and induce their proliferation and adipogenesis. However, existing acellular schemes can lead to the loss of extracellular matrix proteins and structures. This greatly affects the fat regeneration ability of acellular adipose tissue implanted in vivo. However, supercritical carbon dioxide deoiling, mechanical pretreatment, cross-linking cytokines or biomaterials can reduce the loss of extracellular matrix proteins and supplement the proteins that promote tissue regeneration during the preparation of acellular adipose tissue. This can ultimately enhance the angiogenesis and adipogenesis of acellular adipose tissue after transplantation. Acellular adipose tissue has strong application prospects in adipose tissue engineering because of its natural adipogenic induction ability. If the loss of extracellular matrix protein can be overcome during preparation of acellular adipose tissue or under the premise of safety and controllability, acellular adipose tissue is expected to become a suitable soft tissue filler that allows allogeneic injection and in situ adipogenesis.

3.
Journal of Biomedical Engineering ; (6): 1298-1301, 2013.
Article in Chinese | WPRIM | ID: wpr-259721

ABSTRACT

The CrdS protein responding to the acidic adaptation was prokaryotic-expressed in our Laboratory to explore the regulatory mechanism in the acidic adaptation of Helicobacter pylori (H. pylori). The whole genomic DNA of H. pylori strain 26695 was abstracted and set as the template firstly. And then the hp1364 gene coding CrdS protein was amplified via the PCR technique. Then the clonal recombinant plasmid pUCm-T-hp1364 and the prokaryotic expression plasmid pQE30-hp1364 were built and identified by the methods of PCR, cutting with two enzymes and sequencing. After that, the plasmid pQE30-hp1364 was transferred into the E. coli XL1 blue and induced with IPTG. Using western blot and SDS-PAGE, it can be analyzed that the expressed recombinant protein existed mainly in the form of the inclusion bodies and its relative molecular mass was about 46 kDa. The successfully attained recombinant protein CrdS will provide the material to explore the regulatory mechanism in the acidic adaptation of H. pylori and the new way to resist the infection of H. pylori.


Subject(s)
Bacterial Proteins , Genetics , Blotting, Western , Electrophoresis, Polyacrylamide Gel , Escherichia coli , Metabolism , Helicobacter pylori , Genetics , Plasmids , Polymerase Chain Reaction , Recombinant Proteins , Genetics
SELECTION OF CITATIONS
SEARCH DETAIL